列文虎克发明显微镜,细胞发现史及争议

2019-11-03 06:45 来源:未知

  39. 安东尼·万·雷汶胡克
[美]迈克尔·H·哈特 著 苏世军 周宇 译

最早的显微镜是由一个叫詹森的眼镜制造匠于1590年前后发明的。这个显微镜是用一个凹镜和一个凸镜做成的,制作水平很低。詹森虽然是发明显微镜的第一人,却并没有发现显微镜的真正价值。 也许正是因为这个原因,詹森的发明并没有引起世人的重视。事隔七八十年后,显微镜被荷兰人列文虎克研究成功了,并且开始真正地用于科学研究试验。 关于列文虎克发明显微镜的过程,也是充满偶然性的。列文虎克于1632年出生于荷兰的德尔夫特市,从没接受过正规的科学训练,但他是一个对新奇事物充满强烈兴趣的人。 一次,他从朋友那里听说荷兰最大的城市阿姆斯特丹的眼镜店可以磨制放大镜,用放大镜可以把肉眼看不清的东西看得很清楚。他对这个神奇的放大镜充满了好奇心,但又因为价格太高而买不起。 从此,他经常出入眼镜店,认真观察磨制镜片的工作,暗暗地学习着磨制镜片的技术。功夫不负苦心人。1665年,列文虎克终于制成了一块直径只有03厘米的小透镜,并做了一个架,把这块小透镜镶在架上,又在透镜下边装了一块铜板,上面钻了一个小孔,使光线从这里射进而反射出所观察的东西。 这样,列文虎克的第一台显微镜成功了。由于他有着磨制高倍镜片的精湛技术,他制成的显微镜的放大倍数,超过了当时世界上已有的任何显微镜。列文虎克并没有就此止步,他继续下功夫改进显微镜,进一步提高其性能,以便更好地去观察了解神秘的微观世界。 为此,他辞退了工作,专心致志地研制显微镜。几年后,他终于制出了能把物体放大300倍的显微镜。1675年的一个雨天,列文虎克从院子里舀了一杯雨水用显微镜观察。他发现水滴中有许多奇形怪状的小生物在蠕动,而且数量惊人。在一滴雨水中,这些小生物要比当时全荷兰的人数还多出许多倍。 以后,列文虎克又用显微镜发现了红血球和酵母菌。这样,他就成为世界上第一个微生物世界的发现者,被吸收为英国皇家学会的会员。显微镜的发明和列文虎克的研究工作,为生物学的发展奠定了基础。他利用显微镜发现各种传染病都是由特定的细菌引起的,这导致了抵抗疾病的健康检查、种痘和药物研制的成功。 据说,列文虎克是一个对自己的发明守口如瓶的人。直到现在,显微镜学家们还弄不明白他是怎样用那种原始的工具获得那么好的效果的。

  围绕着一个可转动的轴旋转的任何物体,不管它像儿童玩的陀螺那样小,还是像地球那样大,都可以称为陀螺仪。陀螺仪的首次实际应用也许应归功于塞逊。他在1744年说服英国海军部在海上试验一个旋转的、能为船舶指示出稳定的水平基准线的转子。它装在一个枢轴上,以免因船晃动而受干扰。它是现代飞机上使用的陀螺水平仪的祖先。

绝大多数细胞都非常微小,超出人的视力极限,观察细胞必须用显微镜。

公元1632~公元1723

  在塞逊之后很多年,有一个叫桑的苏格兰人和一个叫富科尔的法国人分别在1836年和1852年利用陀螺的稳定性来证明地球的自转,但是桑没有钱制造一个足够精确的转子。富科尔成功地制成了这样的转子,并创造了陀螺仪这个名词。

1665年罗伯特•虎克(是物理学家:在物理学研究方面,他提出了描述材料弹性的基本定律-虎克定律,且提出了万有引力的平方反比关系。在机械制造方面,他设计制造了真空泵,显微镜和望远镜,并将自己用显微镜观察所得写成《显微术》一书,细胞一词即由他命名。在新技术发明方面,他发明的很多设备至今仍然在使用。除去科学技术,胡克还在城市设计和建筑方面有着重要的贡献。1677年至1683年就任英国皇家学会秘书并负责出版会刊。学会的工作条件使他在当时自然科学的前沿(如机械仪器改制、弹性、重力、光学,乃至生物、建筑、化学、地质等方面)做出了自己的贡献。1676年,胡克发表了著名的弹性定律。)提出细胞在观察软木塞的切片时看到软木中含有一个个小室而以之命名的。其实这些小室并不是活的结构,而是细胞壁所构成的空隙,但细胞这个名词就此被沿用下来。罗伯特•虎克第一个观察到了死细胞。

微生物的发现者安东尼·万·雷汶胡克于1632年出生在荷兰台夫特镇的一个中产阶级家庭。他的成年多半都是在镇府里当小官。

  本世纪初,利用大型陀螺仪稳定船舶以防止左右摇晃的研究活动突然增加。最初的发明者是奥托·施利克。这种方法于1908年在英国首次应用,后来被利用小型偏航显示陀螺仪来控制水下鳍板的方法所取代。大约在同一时期,布伦南、谢尔和希洛夫斯基等发明家正在建造能用两个轮子而不是四个轮子行驶的车辆,依靠内部的陀螺仪保持直立,但是他们的工作没有得到社会的承认。

1677年列文•胡克用自己制造的简单显微镜观察到动物的“精虫”时,并不知道这是一个细胞。列文•胡克第一个观察到了活细胞。

雷汶胡克的伟大发现来自他那摆弄显微镜的嗜好。当时在商店自然是买不到显微镜,雷汶胡克就自己动手设计制造。他从来没有当过职业磨镜师,也未曾在这方面受过正规训练,但是他掌握的技术的确精湛,比当时的任何一个职业磨镜师都要高超。

  陀螺原理在航海上的另一种应用是陀螺罗经;它现在是除最小的船只以外的所有船只上都有的一种重要仪器。人们普遍认为,这是德国人安许茨一肯普夫的发明(1908年),不过紧接着美国的斯佩里也发明了陀螺罗经。陀螺罗经能够感测地球的旋转,然后将转轴对准北极,正指北方,甚至船舶在海上摇晃和颠簸时,也能对准。

1827年贝尔发现哺乳类动物的卵子,才开始对细胞本身进行认真的观察。

虽然约在雷汶胡克出生前三十年就已经发明了复合显微镜,但他却从未使用过。但是经过非常认真而准确的研磨,他磨出了焦距很短的小透镜,其分辨能力大于任何早期的复合显微镜。现在他所磨制的透镜中有一台的放大倍数大约是270,而且有迹象表明他曾制造过比这个放大倍数还要大的透镜。

  陀螺仪在空中的应用取得了十分明显的进展。在空中,导航和控制的关键是要有一个精确的垂直基准线。一个单摆是不行的,因为如果它的支承点加速,单摆就会猛烈摆动。在仿真水平仪和自动驾驶仪中,使用一个带垂直轴的陀螺仪,就像一个直立的陀螺一样。飞机在上升或侧滚时跟固定的陀螺轴形成的相对角度会给出一个读数供驾驶员直接利用,也可用作自动控制系统的一个数据。

对于研究细胞起了巨大推动作用的是德国生物学家施莱登和施旺

雷汶胡克在做观察时极其耐心细致。他独具只眼,好奇无比,用自己精心制作的透镜,检查各种各样的物质,从人的头发到狗的精液,从雨水到小昆虫,还有肌肉纤维,皮肤组织以及许多其它样品。他认真做笔记,并对所观察到的事物都详详细细地绘制成图。

  过去20年中,这些航空上的应用,最后发展成了复杂的惯性导航系统。其核心是微型的精密陀螺仪,它能测出每小时零点几度的轻微转动——这种转动比地球缓慢的自转还要小得多。此系统能独立运转,在几千英里的飞行中,不依靠任何外界的参改源,将飞机精确的位置和方向记录下来。

1838年施莱登描述了细胞是在一种粘液状的母质中,经过一种像是结晶样的过程产生的,并且把植物看作细胞的共同体。在他的启发下施万坚信动、植物都是由细胞构成的,并指出二者在结构和生长中的一致性,

自从1673年以后,雷汶胡克就与当时主要的科学组织美国皇家学会保持通信联系。虽然他没有受过高等教育(他只念过初中,除荷兰语以外不懂任何语言),但是在1680年却被选为该会会员,同时还当上了巴黎科学院院士。

  奇炒的万向支架

1867年德国植物学家霍夫迈斯特和1873年的施奈德分别对植物和动物比较详细地叙述了间接分裂;德国细胞学家弗勒明1882年在发现了染色体的纵分裂之后提出了有丝分裂这一名称以代替间接分裂,霍伊泽尔描述了在间接分裂时的染色体分布;在他之后,施特拉斯布格把有丝分裂划分为直到现在还通用的前期、中期、后期、末期;他和其他学者还在植物中观察到减数分裂,经过进一步研究终于区别出单倍体和双倍体染色体数目。

雷汶胡克结过两次婚,有六个孩子,但是没有第三代子孙。他身体健壮,到了晚年仍能继续工作。许多达官贵人都前来登门拜访过他,其中包括俄国沙皇(彼得大帝)和英国女王。他于1723年在台夫特去世,终年九十岁。

  当一个宇宙飞船飞离地球后,在茫茫的太空里,是什么东西给它指引航向呢?用指南针?不行,因为飞船已经脱离了地球。

与此同时,捷克动物生理学家浦肯野提出原生质的概念;德国动物学家西博尔德断定原生动物都是单细胞的。德国病理学家菲尔肖在研究结缔组织的基础上提出“一切细胞来自细胞”的名言,并且创立了细胞病理学。

雷汶胡克做了很多有意义的发现。他是第一个描述精子的人(1677年),是红血球的最早描述者之一。他反对低等生物自然生殖学说,并给出大量的证据。例如,虱子的繁殖方式与有翼昆虫通常的繁殖方式相同。

  一般是使用陀螺来导航,陀螺过去是一种玩具,但是由于它转动后有一种保持转轴不变的惯性,所以可以用于导航。但是,必须有一个万向支架,使运动的船体不影响陀螺运行。飞行器无论怎样翻转,陀螺的支架必需保持

从19世纪中期到20世纪初,关于细胞结构尤其是细胞核的研究,有了长足的进展。

1674年他对微生物进行第一次观察,做出了他的最伟大发现。这是人类史上最具有潜在力的伟大发现之一。雷汶胡克在一小滴水内发现了一个完整的新世界,一个完全意想不到的富有生命力的新世界。虽然他对这个新世界还不了解,但是它对人类具有非常伟大的意义。他所观察到的这些“非常微小的动物”实际上常常掌握着人的生死命运。雷汶胡克曾对微生物做过研究,他在许多不同的地方都可以找到这种生物:井水、塘水、雨水以及口腔和肠道里都有。他对各种不同的细菌及原生动物都做过描述,并计算过它们的体积。

  “水平”才成。所以这种支架又叫作常平支架,它是构成现代陀螺仪的一个重要的部件。

1875年德国植物学家施特拉斯布格首先叙述了植物细胞中的着色物体,而且断定同种植物各自有一定数目的着色物体;1880年巴拉涅茨基描述了着色物体的螺旋状结构,翌年普菲茨纳发现了染色粒,

几乎是在两个世纪以后的巴斯德时期,雷汶胡克的伟大发现才得以应用。事实上整个微生物学科在19世纪末先进的显微镜未发明之前一直处于冬眠状态。因此可能有人会认为即使没有雷汶胡克,即使他的发现是在19世纪做出的,也不会因此使科学的进展受到多大影响。但是雷汶胡克确实发现了微生物,科学是通过他才真正意识到了微生物的存在,这是不容否认的。

  而这个常平支架在我国西汉时代就发明了,不过不是用在指引方向上,而是用在一种熏烘被子的“被中香炉”上。

1888年瓦尔代尔才把核中的着色物体正式命名为染色体。

人们有时会认为雷汶胡克完全是凭运气才做出了一项重要的科学发现。但事实毕竟是事实。他认真地制作出了质量超前的显微镜,他的观察耐心准确,他对微生物的发现自然就是其中的一个结果。换句话说,他的发现是技巧和甘苦结合的产物──恰好同纯粹的运气相对立。

  在我国古代民间从西周起就有焚香除臭、熏烟灭虫的习惯,他们把香草放在一个特殊的盒子里燃烧,但有时会引起火灾。到了汉代,长安的一个叫丁缓的工匠发明了一种被中香炉,它是一个空心球体,里面盛有炭火,无论这个球怎样滚动,炭火也不会撒出来引燃被子。

1891年德国学者亨金在昆虫的精细胞中观察到X染色体,

主要通过个人奋斗而做出的重大科技发明实在是屈指可数,而微生物的发现就是其中之一。雷汶胡克独自从事研究,对细菌和原生动物的发现是人们先前未曾料到的,也与生物学中大多数其它进展不同,根本就不是先前生物学知识的自然产物。就是这个因素连同他的发现终于得以应用的重要性一起,才使他在本册中居于高位。

  汉代司马如的《美人赋》一诗里写道:“金 熏香,浦帐低垂”,这里的 ,就是说的这种被中香炉,这种香炉制作非常精巧,外面镶嵌着美丽的花卉图案,成为妇女的宠物,有的做成烤手的“火笼”,有的用一条链子配带在身上。

1902年史蒂文斯、威尔逊等发观了 Y染色体。

  这种装置为什么不会把炭火撒出来呢?原来,它是由两个相互垂直的支架构成的,所以,无论怎样转动,盛炭火的容器始终保持水平。

1900年重新发现孟德尔的研究成就后,遗传学研究有力地推动了细胞学的进展。美国遗传学家和胚胎学家摩尔根研究果蝇的遗传,发现偶尔出现的白眼个体总是雄性;结合已有的、关于性染色体的知识,解释了白眼雄性的出现,开始从细胞解释遗传现象,遗传因子可能位于染色体上。细胞学和遗传学联系起来,从遗传学得到定量的和生理的概念,从细胞学得到定性的、物质的和叙述的概念,逐步产生出细胞遗传学。

  人们还把它用在节日舞龙灯的“灯球”上,后来,又发展到装在马车上,李约瑟博士在它的《中国科技史》的巨著中,就讲过这种车子。由于车子里装了这种常平架,即使行走在崎岖的路面上,躺在里面的达官贵人也不会感到颠簸,这个支架和后来西方发明的陀螺仪的支架的原理一样,只是中国没有把它应用到更重要的地方。

此外,发现了辐射现象、温度能够引起果蝇突变之后,因突变的频率很高更有利于染色体的实验研究。辐射之后引起的各种突变,包括基因的移位、倒位及缺失等都司在染色体中找到依据。利用突变型与野生型杂交,并且对其后代进行统计处理可以推算出染色体的基因排列图。广泛开展的性染色体形态的研究,也为雌雄性别的决定找到细胞学的基础。

  第一个避雷针

20世纪40年代后,电子显微镜得到广泛使用,标本的包埋、切片一套技术逐渐完善,才有了很大改变。开始逐渐开展了从生化方面研究细胞各部分的功能的工作,产生了生化细胞学。

  雷电的破坏力是相当惊人的,它的温度大约有5万摄氏度,这比太阳的表面温度还要高出好几倍,1977年由于雷击高压线造成美国西北部大停电。因此,人类在很早以前,就探讨着避免雷击,驯服雷电的办法。

谁首先发现了细胞-罗伯特·虎克还是列文·虎克?迄今,国内学术界大都认为,英国学者罗伯特·虎克(Robert Hooke 1635~1702)在1665年发现了细胞,这似乎已成了定论。1985年出版的中学《生物》教科书中就明确写道:“细胞是英国物理学家罗伯特·虎克于1665年发现的。”1996年出版的《生物》中学教科书第一册虽没有写得像1985年版的那样明确,但仍认为:他给这些“小房间”取名叫做细胞。国内高等学校教材也大都肯定是Hooke首先发现细胞。作者在《分子细胞生物学》一书中把Hooke在1665年发表的软木显微结构图中的小孔看作是细胞学史上的第一个细胞模式图。在《中国大百科全书·生物学》分册的细胞学部分中也肯定了:“1665年英国物理学家R.胡克发现细胞。”国外有的书刊也把Hooke看作是细胞的发现者。

  1752年7月的一天夜晚,在美国波士顿,阴云密布,狂风忽起,眼看一场大雨就要铺天盖地而来。就在这个时候,美国科学家富兰克林 (1706~1790)却在野外放风筝。他的风筝很特别,是用杉树枝做骨架,用丝绸当纸,扎成菱形的样子。风筝的顶端安了一根细铁丝,放风筝的麻绳末端拴着一把铜钥匙。当风筝飞上高空不久,豆大的雨点就劈里啪啦地落下来。雨越下越大,狂风裹着暴雨把富兰克林浇了个透湿.富兰克林毫不在意,他紧紧拉住风筝下面的麻绳,不让它像野马一样挣脱缰绳。他等待着即将出现的电闪雷鸣。富兰克林此时对于可能被雷击致伤致命已毫无畏惧。在头顶上闪电忽闪忽闪的时候,他把一个手指靠近钥匙,引出了一个强烈的电火花,在钥匙与手指之间闪过,同时手指感到一阵刺痛。他意识到这是天空的电流通过湿麻绳和铜钥匙传到了他的手上。他高兴地大叫:“电,捕捉到了,天空的电捕捉到了!”他上把铜钥匙和莱顿瓶 (一种蓄电瓶)连接起来,结果莱顿瓶蓄了大量的电,这种电同样可以点燃酒精,可以做“摩擦起电”的静电所做的一切。

那么如果我们把这一问题认真加以核实的话,就会发现把Hooke看成是细胞的首先发现者是不恰当的。

  这个实验证明了打雷实际上就是一种大规模的放电现象。富兰克林进而想到,如果在建筑物上装一根金属导线,导线下端接地,那么,根据尖端放电的原理,云中的电荷就会同导线尖端的感应电荷慢慢中和,这样就可以使建筑物免遭雷击。后来理论变成了现实,富兰克林在费城建造了第一个避雷针。这是一根竖直的金属棒,以不导电的材料固定在屋顶上。在棒上拴一根金属线通到地下。当闪电袭击房屋时,它沿着棒和金属线这条捷径到达地下。这样,建筑物就未受损害。当富兰克林的这一发明传开后,人们纷纷采用它。

1 Hooke使用的cell一词无“细胞”涵义 R.Hooke是一位出色的物理学家,是英国皇家学会的早期会员之一。他用自制的显微镜观察了多种物体。1665年他发表了《显微图谱》(Micrographia)专著,记载了对矿物、植物、动物标本的显微结构的观察结果。当时他是从物理学的角度进行观察的。其中最出色的观察要算是对软木薄片里密集排列着小孔的发现,他详细地描述了观察的结果,并把这些小孔称为pores或cells。他推想这些小孔是为植物生长供应液体的通道。在Hooke生活的年代,英文cell一词的词意是“囚室”或“小室”,他在观察到软木的显微图象时把其中的小孔形象化地称为“小室”或“小孔”。Hooke对自己观察到的现象很兴奋,他在描述时说:我一看到这种形象就认为这是我的发现。因为它确是我第一次看到的微小孔洞,也可能是历史上的第一次发现。这显然使我理解了软木为什么这么轻的原因。从Hooke的表述可以看出,他观察到的是软木的物理结构,而不是植物组织的细胞结构。因此Hooke在显微镜下看到的只是植物死的细胞壁及其围成的腔隙,并没看到原生质体,更谈不到完整的活细胞了。由此可见,Hooke既没有看到真正的细胞,也无从用cell一词来指细胞。1675~1679年M.Malpighi也观察到植物的管结构是由小囊组成,他所称的小囊相当于Hooke所说的小室,但其描述也未超过Hooke的水平。

  我国古代劳动人民也观察到了雷电的放电现象,并懂得采用较为科学的方法予以避免。1638年,外国一位曾游历过中国的修道士马卡连出版了一本介绍中国的书,其中谈到当时的建筑物时写道:“……屋顶的四角都被雕饰成龙头的形象,仰着头,张着嘴。在这些怪物的舌头上有一根金属芯子,其末端一直伸到地里,如果有雷电打在房顶上,它就会顺着龙的舌头跑到地里,不会产生任何危害。”

2 首先观察到细胞的是Leeuwenhoek 与Hooke生活在同一时代的荷兰人列文虎克(Antoni Van Leeuwenhoek 1632~1723)在对生物的显微观察方面做出了巨大贡献。Leeuwenhoek的出身、家境和学历远不及Hooke,他在布店中当过学徒,1671年才开始了科学技术生涯,是年他已近40岁。可是他刻苦钻研,自强不息,掌握了一手磨制优质透镜的绝技。最初他磨制透镜的目的是检验布匹的质量,后来他进一步把磨制的透镜装配成了显微镜,对许多物体进行了观察。同时他又认真阅读了当时的一些重要生物学著作,为他进行生物标本的研究奠定了基础。他利用显微镜在液体标本中发现了许多微生物,他认为他所观察到的那些能动的物体是小动物。1673年(Hooke发表《Micrographia》专著后的8年),他把所观察到的结果写信报告给了英国皇家学会,他的报告在学会中引起了轰动,因为这是第一次观察到了过去谁也没有看到过的微小生物。此后,他又陆续把观察到的结果不断向皇家学会报告,先后共写了30几封信。这些信实际上就是Leeuwenhoek的学术论文,报告了他的许多重大发现,如细菌、原生动物、轮虫和性细胞等。他还测量了一些细胞的大小,如红细胞为7.2μm;细菌为2~3μm。他认为能动的精子不是动物,而是精液中的正常成分。40余年中,他观察了节肢动物、软体动物、鱼类、两栖类、鸟类和哺乳动物的精子。他在研究动物和植物生殖活动方面也做出了突出贡献。由此可见,Leeuwenhoek是一位名符其实的卓越的生物学家。他虽然没有使用cell一词,然而他确实首先观察到了完整的活细胞。由于Leeuwenhoek所报告的都是一些重大发现,英国皇家学会把他的信件全部由荷兰文译成了英文,并汇编成了论文集,冠名为《Phiosophical Transaction》(《哲学汇报(1673~1724)》。他所观察到的细菌、红细胞、精子都是游离的活细胞,因此之故把细胞的发现归功于Leeuwenhoek,他是当之无愧的。鉴于Leeuwenhoek在生物学研究中做出的卓越贡献,1680年他当选为英国皇家学会会员;1699年获得了巴黎科学院通讯院士的荣誉称号。

  显微镜的出现

3 19世纪初的学者才赋予了cell以“细胞”的词义 Hooke借用cell一词来描述他首先观察到的软木中的小室,围成这些小室的四壁则仅是植物细胞壁的残留物。那么,为什么许多学者会把Hooke称为细胞的发现者呢?我想不外乎是,在100多年后当学者们认识到原生质体时,又继续沿用了Hooke借用的Cell一词来称呼原生质体。庄孝僡在“从胡克到细胞生物学”一文中写道:“尽管胡克所看到的不是细胞本身而只是细胞的外壳——小室的四壁实际上是植物细胞的细胞壁,因为他首先叙述了这样的构造,Cell一词还是被沿用下来了,其主要原因可能是因为继胡克之后首先是植物学家对植物细胞进行观察,而植物细胞都是有细胞壁的,和胡克的叙述一致。”然而,尽管如此,后人所沿用的Cell一词与Hooke借用的Cell一词是字同义不同,前者赋予了Cell一词真正的细胞涵义,而后者只是用Cell一词指木栓中的具壁小室。因此,Cell一词自Hooke在《Micrographia》一书中借用时及以后的100多年中不应译为细胞。究竟是谁首先沿用Cell一词来称呼原生质体,无从查考。据记载,19世纪初学者们才注意到了植物组织的小室中的原生质体结构。植物解剖学家C.B.Mirbel一反传统观念,认为植物各种组织中的细胞具有独立性。由此可见,随着科学的发展,到19世纪初学者才给Cell一词添加上了细胞的涵义,并沿用下来,结果使后人误认为,细胞是Hooke发现的;Hooke首先创用了“细胞”一词。早在60年代初,复旦大学遗传学研究室翻译了由E.D.P.De Robertis等著的第二版《普通细胞学》,译者为了纠正上述误解,就曾对Cell一词的译法做了注解:“Hooke当时所看到的细胞,只是一些死了的没有内容物的细胞壁和中间的空腔,因此看上去好像一个个小室一样。后来对细胞的概念逐渐发生了很大的转变,但Cell一字则因习惯而沿用了下来,结果使它产生了一个新的意义,即所谓细胞。”其实在翻译Hooke所著的《Micrographia》原著的文字时,不应把Cell译为细胞,而应译为“小室”。 R.Hooke和A.Leeuwenhoek都是17世纪下半叶在学术上贡献卓著的学者。本文的目的不是要评价两位学者的学术贡献大小,而只是想就谁首先发现细胞的问题做出客观的评说,以期今后在教学中能对此问题有一个准确的介绍。根据两位学者报道的研究结果来看,首先发现细胞的应当是Leeuwenhoek,而Hooke的发现则为后人进一步研究生物体的细胞结构起了启迪作用。赋予Cell一词以“细胞”涵义的则应归功于19世纪初期的生物学家。

  我们肉眼能看到的物体都是比较大的,小到一定的程度,它就无能为力了。谁有本事看到指甲垢中的细菌、病毒呢?谁又有本事瞧见河水中的微生物?千百年来,人类对周围的微观世界真可说是“视而不见”。

  确切地说,“放大镜”的科学名称应该叫“凸透镜”,它是一块有一个面或两个面凸起呈弧形的透明玻璃片。古希腊人和中世纪的阿拉伯人都知道,用这种放大镜可以看清楚物体的细节处,用它还可以通过聚焦太阳光而取火呢,因此,他们又称它为“取火镜”。

  当然,仅仅能将物体放大一点还不算希罕,要是能把平时用肉眼看不见的物体放大到看得见了,才真正有意思呢!这种有“显微”作用的“显微镜”最早出现在荷兰。那里的人们很早就开始磨制玻璃和宝石了,这种专门技术经过几个世纪的流传,到16世纪已经相当成熟了。

  1590年,在荷兰的米德尔堡,有一个眼镜制造商名叫扎哈里耶斯·詹森。詹森和他的妻子在米德堡开设了一家遐迩闻名的眼镜制造工场,由于詹森磨制镜片的技术精湛,待人和气热情,因此,很受顾客的欢迎。

  在詹森的工作室兼营业室的架子上,陈列着他精心制作的各种杰作:有镶嵌绿宝石的眼镜架,有雕刻着花纹的眼镜,当然更多的还是大大小小、厚厚薄薄、形形色色的眼镜镜片。每一件杰作制造出来以后,都少不了他的妻子对它们作一番“评头论足”,严厉的妻子常常使詹森感到十分难堪。

  一天晚上,詹森又像往常那样在工作台上摆满了家什,他的妻子则在厨房内忙着准备美味的晚餐。

  詹森这天兴致所至,做了2个圆筒,一个圆筒的一端嵌着一块双凸透镜,另一个圆筒的一端嵌着一块双凹透镜。他手拿着这2个圆筒左右比试着,突然,他发现从双凹透镜前看自己放在双凸透镜一端的手指好像粗了很多。他又去捉了一只小甲虫放在下面观察:小甲虫确实变大了!

  “亲爱的,快来看啊!”詹森兴奋地向厨房大声叫嚷,“我又制造了一件宝贝。”

  妻子干完了手中的活,系着围裙走进了詹森的工作室。

  “什么宝贝呀?让我看看!”她拿过詹森手中的圆筒看了起来。“我以为你发现了什么新大陆呢!原来是这玩意儿,不稀奇!不稀奇!要我说呀,如果能将远处的东西放大,看得清楚,那才叫稀奇呢!近处的东西,即使放大看,也没什么意思,眼睛直接看那个小甲虫,不也看得清清楚楚楚吗?”

  詹森觉得妻子的话不无道理,“我应该使它看清眼睛看不清的东西,对!这才算稀奇。”经过一段时间的琢磨,他终于造出了能够看清很小物体的显微镜。今天,米德尔堡科学协会仍然保存着一架镜筒长18英寸、直径约2英寸的显微镜,据说这就是詹森制造的。

  1665年,30岁的胡克在化学家波义耳的实验室里当一名助手。工作之余,胡克常常喜欢自己干一点事情,改制显微镜便是他的业余爱好之一。他用他改制的显微镜来观察各种物体的放大形象,同时,也用来测试显微镜的放大效果。

  一天晚餐过后,胡克又端出了他的宝贝显微镜,拿出一小片木炭进行观察。接着他又拿出一小片软木塞片放到了显微镜底下。

  “咦,这是什么?”胡克发现软木塞片有着其他材料所没有的结构,他仔细地进行了观察。“它看上去全部是多孔多洞的,很像一只蜂窝,但是这些蜂窝并不很深。应该给这些蜂窝起个名字,叫它什么好呢?嗯……对!就叫 ‘细胞’吧!”

  胡克所指的“细胞”其实是那些一度被活的物质所占有过的小格子。从此以后,“细胞”一词就用来描述生命的基本结构单位,并且一直沿用至今。以后,胡克又观察过萝卜、芜菁等其他植物,也观察到了它们所具有的类似的细胞结构。只是胡克对生物学的兴趣不大,因此,很快他就不再对细胞进行深入研究了。不过,胡克对显微镜的改制,使得显微术广为流传开来;他还将他观察到的许多东西汇编成一本书,书名叫作《显微图志》。这本书中有83页插图,它记录下了人类最早发现细胞的许多珍贵资料,还记录了胡克观察雪花晶体结构的图形,以及微小的化石生物的结构。

  胡克使显微镜从玩具变成了科学仪器,他的作用犹如伽利略将望远镜从对准枝头小鸟到指向茫茫星空一样。

  几乎与胡克同时期的列文虎克,于1660年28岁时,在德耳夫特谋得了该城郡长总管的职务。列文虎克虽然跻身政界,身居要职,但他仍保留着自己从小培养起来的嗜好——磨制镜片。列文虎克研制的显微镜结构十分简单,严格地说它只是一种放大镜。他研制的显微镜的特点是将一个凸透镜装在一块铜板上,再用一个凹镜使光聚焦在所要观察的物体上。

  列文虎克磨制了400多块镜片,许多镜片面积很小,有的甚至比针尖大不了多少。列文虎克通常将磨制好的镜片夹在两层钻有小孔的铜片之间,然后将铜片铆在一起,在铜片上还有微调器可以调节焦距。列文虎克就是使用这种自制的显微镜于1674年开始观察微生物和原生动物的。

  第2年,列文虎克通过显微镜首先发现了原生动物,轮虫、滴虫、细菌等,它们的长度虽然很小很小,但是,它们确实是活的,是有生命力的东西。

  以后,列文虎克又发现了其他许多东西。

  他将牙齿缝中积留的牙垢取下来,用水稀释以后,首次看到了微生物;

  他将蝌蚪的尾巴放在显微镜下,观察到了50多处微细血管中的血液回流,证明了动脉和静脉实际上是一根连续的血管;

  他将雨水和泥水取来,也在其中发现了微小的“动物”,这些小“动物”还能沾在漂浮于空气中的尘埃上随风飘扬呢;

  列文虎克的这些发现,在生物学史上开辟了一个崭新的研究领域,他成了在显微镜下观察到微生物和原生动物的第一个人。

  以后,列文虎克的大部分显微镜按照他的遗愿都赠给了英国皇家学会,至今,这些珍贵的仪器仍然保存在博物馆中。

  到了19世纪20年代,科学家们终于研制成功了消色差显微镜,为观察细胞提供了有力的工具。1938年,德国植物学家施莱登发现了植物细胞;第二年,德国动物学家施旺发现了动物细胞。这当然都是在显微镜下才取得成功的。在此基础上,一门新科学——细胞科学建立了。

  上面我们说的显微镜都属于光学显微镜,它通常是由用玻璃磨成的透镜组合在一起使物体放大的。第一块透镜产生物体的放大像,再用第二块透镜来观察这个放大了的像。但是,光学显微镜并不能无限地放大物体,尽管人们在它发明之后的300年中作了种种努力——透镜越磨越光,设备越制越精。但是,遗憾的是,光学显微镜的有效放大率始终没有突破2000倍这个极限!

  早在19世纪末,德国一位名叫阿贝的光学家就认为,光学显微镜的分辨本领大约是使用光线波长的一半。既然光线的波长可以影响分辨本领,那么如果使用波长短的光线来作光源,不就可以把显微镜的分辨本领提高一些了吗?分辨本领高了,放大倍数自然也就提高了嘛!当时,科学家已经知道紫外线、X射线、γ线的波长要比光波短。经过多年的努力,在20世纪初出现了紫外线显微镜,后来又出现了X射线显微镜,但是并没有人马上联想到要制造电子显微镜。

  1924年,法国科学家德·布洛依证明了任何一种粒子,当它们在快速运动时,必定都伴有电磁辐射,辐射波的波长与粒子的制裁量及粒子运动的速度成反比。这真是一个好消息:如果能用高速运动的电子来作光源而发明出一台电子显微镜的话,那该是多么振奋人心啊!可惜,德·布洛依的证明并没有引起人们的重视。

  那时,许多科学家都在从事高压阴极射线示波器的研究。1924年,一个名叫加柏的科学家在德国柏林进行这项研究时,无意间制造出了一种短焦距、有会聚能力的线圈,然而,加柏不能解释为什么这种线圈具有会聚作用,也不知道这样的线圈有什么用处。

  2年以后,又一位德国科学家布施发现,加柏制造的线圈对电子可以起透镜的作用。他发现高速运动的电子在电磁场的作用下会发生折射,并且能被聚焦,就如同普通的可见光通过透镜被折射聚集一样。然而,这个重要的发现同样没有及时应用到制造电子显微镜方面来。

  德·布洛依和布施的两个发现,为电子显微镜的发明指出了方向,但是,谁是幸运的发明者呢?

  布施的发现引起了许多人的兴趣,柏林技术大学于1928年成立了一个专门研究小组来研究高压阴极射线示波器。这个小组由一些大学生和研究生组成,为首的是克诺尔,其中刚从大学毕业不久的24岁的鲁斯卡专门负责有关电子光学部分的工作,他的第一件工作就是系统地研究磁场的光学行为。

  经过鲁斯卡的努力,他发现经过电子光学放大12倍后得到的钼格的像和用玻璃透镜得到的同样放大倍数的像没有什么区别,这个结果使年轻的鲁斯卡感到十分兴奋,他决心把工作深入下去,并且作为计划报告提交给技术大学的学部,从而奠定了把磁透镜进一步发展为电子显微镜的基础。

  1931年4月7日星期二,虽然这一天阴雨蒙蒙,但是对鲁斯卡来说,却是终生难忘的。

  早晨,与往常一样,吃过早餐,喝了一杯咖啡,鲁斯卡便走进了自己已经工作了三四年的实验室。这一天,他将做一个实验:将2个磁透镜组成的电子光学光具座,对铂金网格进行二级放大。原来他认为这个实验不会很顺利,但是事实却使他大为惊讶:他成功地放大了17倍。

  “哇!这真想不到,磁透镜竟然和光学透镜一样,不仅对光束具有折射聚焦作用,而且经过组合还有放大作用呢!”从这一天起,鲁斯卡便献身于电子显微镜的研制工作了。

  鲁斯卡的成功仅仅是初步的,还存在很多困难需要解决,例如在电压很高的情况下,生物样品一放入镜体内就会受到高强度电子束的照射,从而造成严重的辐射损伤,使得图像很难被真实地记录下来。

  在这种情况下,克诺尔打退堂鼓,转而去研究电视了,而鲁斯卡仍然坚持着,他把所有的时间和精力都贡献给了电子显微镜的研制工作。到1933年底,功夫不负有心人,鲁斯卡终于建成了一台真正的电子显微镜,它的最高放大倍数达到12000倍,为光学显微镜的6倍。而且,鲁斯卡想了一个巧妙的办法来解决辐射损伤难题:他在镜内装了一个旋转台,一次可装好几个样品,当一个样品被电子束毁坏时,另一个样品很快就可取而代之。

  虽然鲁斯卡费尽了心血,却得不到各方面的支持,他不得已也忍痛割爱,转而和老同事克诺尔一起研制电视去了。

  就在电子显微镜研制工作濒临中断的时候,马顿在布鲁塞尔挽救了这个令人丧气的局面。1933年底以前,马顿构造成功了第一台磁式电子显微镜,利用这台仪器他真实地观察了一些生物样品,并且首次拍摄到某种植物根的厚切片的电子图像,这在当时来说,真是一个了不起的成就!在此基础上,马顿又成功地制造了第二台电子显微镜,他用这台显微镜观察了各种各样的生物材料,并且用事实证明:电子显微镜是可能具有实用价值的!

  自从1933年鲁斯卡转到电视研究以后,许多国家都开展了电子显微镜的研制工作。英国也是其中之一。

  1936年前后,英国科学家马丁说服了英国皇家学会,花了一笔经费制成了一台光学电子显微镜,马丁在这台仪器上全面比较了光学显微镜和电子显微镜的性能。尽管马丁制成的电子显微镜操作起来相当不便,而且又确实存在样品的辐射损伤,再加上在电子显微镜和光学显微镜之间需要有移动样品的机械装置,使得它的设计更加复杂,然而得到的实验结果却清楚地表明:电子显微镜是有实用价值的,可以进行大批量生产。可惜当时正临近第二次世界大战,许多公司都要生产雷达,所以电子显微镜的商品生产就被搁置一旁了。

  在这一时期内,鲁斯卡也始终期望着能早一天制造出一台真正实用的电子显微镜,可以供任何一个实验室使用。在马顿等人工作的激励下,人们对电子显微镜的前途已耳濡目染,所以鲁斯卡重新又得到了财政上的支持,他便立即着手电子显微镜的研制工作,重点放在改进仪器的设计和简便操作性能方面。

  当鲁斯卡正要开始工作时,他还幸运地得到了他的兄弟赫尔穆特的大力协助。赫尔穆特是个医生,在医学界小有名气,生活富裕舒适,但他毅然放弃了这一切,决心和鲁斯卡一起把电子显微镜试用到医学上,以解决光学显微镜不能解决的疑难问题。经过几年的艰苦努力,鲁斯卡终于在1938年研制成功了世界上第一台真正实用的透射电子显微镜。次年,德国的西门子—哈尔司克公司以这台电子显微镜为样机,生产了世界上第一批商品电子显微镜,有40台左右,并在二次大战后运往其他国家。

  到这时为止,电子显微镜便正式问世了,人类从光学显微镜时代进入了电子显微镜时代。

  从1938年至今,电子显微镜大致经过了4个发展阶段。第一个阶段从30年代到50年代初,仪器结构相对简单,只由1个聚光镜和2个成像透镜组成,操作维修相当复杂,因此应用并不普遍,主要局限在科学水平比较发达的国家;第二个阶段从50年代初到60年代初,电子显微镜的性能有了很大改进,由2个聚光镜和3个成像透镜组成,操作维修也比较简单了,很多国家都能够生产制造,使它的应用范围迅速扩大;第三个阶段从60年代初到70年代初,一方面透射电子显微镜达到了比较完善的程度,另一方面它的种类增多,出现了扫描电子显微镜、超高压电子显微镜、分析电子显微镜等等。电子显微术也如雨后春笋般蓬勃发展,如电子显微图像的光学与计算机处理技术、X射线显微分析技术等;第四个阶段从70年代初至今,仪器本身性能进一步完善,并且能直接观察重金属原子的成像,自动化程度更加提高。并且出现了各种专用电子显微镜,如扫描透射电子显微镜、光学电子显微镜、全息电子显微镜等,电子显微术与物理、化学、数学、生物、计算机科学等更加相互渗透、融合。

  电子显微镜成了许多学科中不可缺少的工具。

  有了光学显微镜和电子显微镜,当然使人类看到了层层深入的微观世界,但是,离开“看”到原子还相距很远。

  1982年,国际商用机器公司苏黎世实验室的科学家宾尼和罗雷尔发明了真空条件下工作的扫描隧道显微镜,使人类第一次“看”到了物质表面的原子排列状态。为此,他们荣获了1986年的诺贝尔物理学奖。

  扫描隧道显微镜能将原子图像放大上百亿倍,因此,可以直接观察物质表面的奇妙景色。在微电子、半导体生产工艺中,科学家正是利用这一火眼金睛深入了解半导体材料表面结构及表面粗糙度的。从 1984年开始,扫描隧道显微镜就被用于真空、常压大气、室温、低温、蒸馏水、溶液、电解液等环境下研究不同物质的表面结构。

  1991年11月,我国科学家运用自行研制的扫描隧道显微镜,观察了用德国重离子加速器实验中心高能带电重金属离子轰击的天然二硫化钥样品,清晰地看到了正常原子与辐射损伤坑共存的表面原子形貌图,这在世界上还是首次。1993年8月,第8届扫描隧道显微学国际年会在我国北京召开,它给我们带来了有关微观世界的更多信息。工程仪器设备

  齿轮的起源

  齿轮的起源可追溯到公元前二三世纪的古埃及的托勒密王朝。那时,端面齿轮或伞形齿轮通常用来驱动一个像“灯笼”一样的极粗糙的小齿轮组件;小齿轮组件是用板条笼或栅笼连接起来的两个简单的轮圈,轮圈的两端被齿轮松松地咬住。在欧洲、亚洲和非洲,有齿轮的提水装置到处采用,而且在许多世纪内,不少村庄都只有一套齿轮。但大约在公元前1世纪,有人看出,可以用齿轮把卧式水磨同垂直提水的水车(两项较晚的发明)结合起来;维脱劳维斯在描述用垂直水轮、端面齿轮和“灯笼”驱动水磨时,最先向我们介绍了齿轮。这种水磨的推广比卧式的缓慢,但中世纪初期,至少在欧洲的低地国家和穆斯林世界的某些人口稠密地区,它却是磨面粉的普通方法。

  蜗轮蜗杆,也就是中古和文艺复兴时期的工程师所说的螺杆,可能是阿基米德本人的发明,曾应用在几种工具中,但只有像亚历山大城的赫伦那样特别熟练的技术人材才有把握制造出一根合适的螺杆来。在这些小型的科学仪器中,齿轮是金属的。希腊—罗马时代遗留下来一组独特的黄铜齿轮,这组齿轮是从遇难的“安蒂西塞拉”号船上打捞起来的一台小计算器上发现的。金属齿轮一直用在某些天文仪器上,等到机械钟表问世后才得到普及。是那些钟表匠人首先寻求提高齿轮的效率,他们创造了一种跟钻齿的齿轮不同的齿轮。达·芬奇花了很长时间研究出齿轮传动比和理想的齿形。据说,16世纪的一位后继人屠里安诺制造了一台轮齿切割机,用来为皇帝查理五世建造的巨型天象仪制作齿轮。但是,大规模生产精密轮齿的理论和机床则是在100年后出现的:英国王政复辟时期才开始普遍使用轮齿切割机,稍后,法国的罗梅尔和拉伊尔又对轮齿切割进行了数学分析。

TAG标签: 财神8cs8
版权声明:本文由财神8cs8发布于文学新闻,转载请注明出处:列文虎克发明显微镜,细胞发现史及争议